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Abstract. When dealing with location problems we are usually given a set of
existing facilities and we are looking for the location of one or several new
facilities. In the classical approaches weights are assigned to existing facilities
expressing the importance of the new facilities for the existing ones.

In this paper, we consider a pointwise de®ned objective function where the
weights are assigned to the existing facilities depending on the location of the
new facility. This approach is shown to be a generalization of the median,
center and centdian objective functions. In addition, this approach allows the
formulation of completely new location models. E½cient algorithms as well
as structural results for this algebraic approach to location problems are pre-
sented. A complexity analysis and extensions to the multifacility and restricted
case are also considered.

Key words: Location theory, global optimization, algebraic optimization,
convexity

1 Introduction

In the last three decades much research has been done in the ®eld of continu-
ous location theory and very many di¨erent models have been developed. For
a comprehensive overview the reader is referred to Plastria's chapter in the
book of Drezner [18].

In the following we will introduce a new model for location problems. This
new model provides a common framework for the classical continuous loca-
tion problems and allows an algebraic approach to these problems. Moreover,
this ¯exible approach leads to completely new objective functions for location
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problems. It is also worth noting that the approach presented in the following
emphasizes the role of the clients seen as a collective. From this point of view
the quality of the service provided by a new facility to be located does not
depend on the speci®c names given to the demand points by the modeler.
Di¨erent ways to assign names to the demand points should not change the
quality of the service, i.e. a symmetry principle must hold. This principle being
important in location problems is inherent to this model. In fact, this model is
much more than a simple generalization of some classical models in locational
analysis because any location problem whose objective function is a mono-
tone, symmetrical norm of the vector of distances reduces to it [19]. After this
short characterization of the new model we will introduce it formally.

We are given a gauge g��� : R2 ! R to measure distances, a set of
demand points A � fa1; a2; . . . ; aMgHR2 (representing existing facilities or
clients) and two sets of non negative scalars W � fw1; . . . ;wMg and L �
fl1; . . . ; lMg. The element wi A W is the weight of importance given to the
existing facility ai, and the elements of L allow us to choose between di¨erent
kinds of objective functions.

Given a permutation s of the set f1; . . . ;Mg satisfying

ws1
g�xÿ as1

�Uws2
g�xÿ as2

�U � � �UwsM
g�xÿ asM

�

we denote g�xÿ A��i� � wsi
g�xÿ asi

�.
The ordered Weber problem is then given by:

min
x AR2

F�x� �
XM
i�1

lig�xÿ A��i�: �1�

Note that the problem is well-de®ned even if ties occur. In that case any order
of the tied positions gives the same value.

Theoretical properties of (1) have been studied in a di¨erent setting in [19].
To describe di¨erent types of location problems we use a 5-position classi®-
cation scheme Pos1/Pos2/Pos3/Pos4/Pos5, which allows us to indicate the
number of new facilities (Pos1), the type of the problem as planar, network-
based, discrete, etc. (Pos2), any assumption and restriction such as wm � 1 for
all m A M, etc. (Pos3), the type of distance function such as lp, general dis-
tance function d, etc. (Pos4), and the type of objective function (Pos5) (see
[16] for further details). According to this scheme we will refer to the problem
described in (1) as 1=R2= � =gB=Sord .

The reader may note that problem 1=R2= � =gB=Sord is somehow similar
to the well-known Weber Problem, but it is more general because it includes
as particular instances the Weber problem (l1 � l2 � � � � � lM � 1), the a-
centdian problem (l1 � � � � lMÿ1 � 1ÿ a and lM � 1) and the center problem
(l1 � � � � � lMÿ1 � 0 and lM � 1).

But, as already mentioned at the beginning of the introduction, also new
useful objective functions can easily be modeled. Assume, for example, that
we are not only interested in minimizing the distance to the most remote client
(center objective function), but instead we would like to minimize the average
distance to the 5 most remote clients (or any other number). This can easily
be modeled by setting lMÿ4; . . . ; lM � 1 and all other lambdas to zero. This
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k-centra problem is a di¨erent way of combining average and worst-case
behavior.

Also ideas from robust statistics can be implemented by only taking into
account always the k1 nearest and simultaneously the k2 farthest. Of course,
we could also just exclude always the k1 nearest and simultaneously the k2

farthest. Moreover, the direct relation of the lambdas to the choice of the
objective function will be quite useful for scenario analysis.

Example 1.1. Consider three demand points a1 � �1; 2�, a2 � �3; 5� and a3 �
�2; 2� with weights w1 � w2 � w3 � 1. Now choose l1 � l2 � l3 � 1 then
we get F �x� �P3

i�1 kxÿ aik, i.e. the Weber problem. For the second case
choose l1 � l2 � 1=2 and l3 � 1 then we get: F�x� � 1=2

P3
i�1 kxÿ aik�

1=2 max1UiU3kxÿ aik, i.e. the 1=2-centdian problem. Finally choose l1 �
l2 � 0 and l3 � 1 and we get: F �x� � max1UiU3kxÿ aik, i.e. the center
problem.

Also note that the objective function of this problem is region-wise de®ned
and in general non-convex if no additional assumptions are made on the set
L (see [6] for further details).

Example 1.2. Consider two demand points a1 � �0; 0� and a2 � �10; 5�,
l1 � 100 and l2 � 1 with l1-norm and w1 � w2 � 1. We obtain only two
optimal solutions to Problem (1), lying in each demand point. Therefore the
objective function is not convex since we have a non-convex optimal solution
set.

F�a1� � 100� 0� 1� 15 � 15

F�a2� � 100� 0� 1� 15 � 15

F�12 �a1 � a2�� � 100� 7:5� 1� 7:5 � 757:5

See Figure 1.
These two characteristics allow to model many di¨erent problems as we

will show in the following.
The aforementioned paper by Puerto and FernaÂndez [19] focuses only on

developing the theoretical properties of this problem. Neither algorithms have
been presented nor complexity aspects have been addressed. Exactly this will
be the aim of this paper.

The outline of the paper is as follows: ®rst geometrical properties of (1)
with polyhedral gauges are exploited. Then an e½cient algorithm for the
single facility case is given. The next section is devoted to extensions of Prob-
lem (1) to the multifacility case. After that, the cases of restricted problems
and general gauges are investigated and an approximation result is given. The
paper ends with some conclusions and an outlook to future research. In order
to keep the presentation of this paper as clear as possible, we discuss all results
for the planar case only. Nevertheless most of the following principles can
directly be adapted to the n-dimensional case.
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2 Geometrical properties

We are mainly interested in problems with polyhedral gauges. For this reason
we will assume in the rest of the paper that BJR2 is a bounded polytope
whose interior contains the zero and we denote the set of extreme points of
B by Ext�B� � feg : g � 1; . . . ;Gg.

The polar set Bo of B is given by

Bo � fx A R2 : hx; piU 1 Ep A Bg:

In the polyhedral case, Bo is also a polytope, whose extreme points are
feo

g : g � 1; 2; . . . ;Gg, in R2, see [21] and [8].
The normal cone to B at x is given by

N�B; x� :� fp A R2 : hp; yÿ xiU 0 Ey A Bg �2�

and the boundary of B is denoted by bd�B�.
In this section we address properties of the planar formulation of Problem

(1) (denoted by 1=R2= � =gB=Sord ) which give us speci®c insights into the ge-
ometry of the considered model. We de®ne fundamental directions d1; . . . ; dG

as the hal¯ines de®ned by 0 and e1; . . . ; eG. Further, we de®ne Gg as the
cone generated by dg and dg�1 (fundamental directions of B) where dG�1 :�
d1. Let p � �pi�i AM be a family of elements of R2 such that pi A Bo for each
i A M and let Cp �7

i AM �ai �N�Bo; pi��. A nonempty convex set C is called
an elementary convex set (e.c.s.) if there exists a family p such that Cp � C.

We can obtain the elementary convex sets also as intersections of cones
generated by fundamental directions of these balls pointed at each demand
point. Therefore each elementary convex set is a polyhedron whose vertices
are called intersection points (see Figure 1). An upper bound of the number

Fig. 1. Illustration to Example 1.2
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of elementary convex sets is O�M 2G2�. For further details see Durier and
Michelot [8].

As we have already seen in the last section we do not have a uni®ed linear
representation of the objective function of (1) on the whole space.

It is easy to see, that the representation may change when g�xÿ ai�ÿ
g�xÿ aj� becomes 0 for some i; j A f1; . . . ;Mg with i0 j. We will develop in
the following a geometrical description of the regions where the representation
of the objective function as a weighted sum stays unchanged.

De®nition 2.1. The set Bg�ai; aj� consisting of points fx : wig�xÿ ai� �
wjg�xÿ aj�; i 0 jg is called bisector of ai and aj with respect to g.

As an illustration of De®nition 2.1 one can see in Figure 1 the bisector line for
the points a1 and a2 with the rectangular norm.

Proposition 2.1. The bisector of ai and aj is a set of points verifying a linear
equation within each elementary convex set.

Proof: In an elementary convex set g�xÿ ai� and g�xÿ aj� can be written
as li�xÿ ai� and lj�xÿ aj� respectively, where li and lj are linear functions.
Therefore, wig�xÿ ai� � wjg�xÿ aj� is equivalent to wili�xÿ ai� �
wjlj�xÿ aj� and the result follows. r

We will now give a more exact description of the complexity of a bisector.

Proposition 2.2. The bisector of ai and aj with respect to a polyhedral gauge
g with G extreme points has at most O�G� di¨erent subsets de®ned by di¨erent
linear equations.

Proof: By Proposition 2.1 bisectors are set of points given by linear equations
within each elementary convex set. Therefore, the unique possible breakpoints
may occur on the fundamental directions.

Let us denote by Lg
ai

the fundamental direction starting at ai with direction
eg. On this hal¯ine the function wig�xÿ ai� is linear with constant slope and
wjg�xÿ aj� is piecewise linear and convex. Therefore, the maximum number
of zeros of wig�xÿ ai� ÿ wjg�xÿ aj� when x A Lg

ai
is two. Hence, there are at

most two breakpoints of the bisector of ai and aj on Lg
ai

.
Repeating this argument for any fundamental direction we obtain that an

upper bound for the number of breakpoints is 4G. r

This result implies that the number of di¨erent linear expressions de®ning
any bisector is also linear in G, the number of fundamental directions.
Remark, that in some settings bisectors may have non empty interior, see for
instance Figure 2, where we show the bisector set de®ned by the points �0; 0�
and �4; 0� with the Tchebychev norm.

When at least two points are considered simultaneously the set of bisectors
builds a subdivision of the plane (very similar to the well-known k-order
Voronoi diagrams, see the book of Okabe et al. [17]). The cells of this sub-
division will be called from now on ordered regions. We formally introduce
this concept.
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De®nition 2.2. Given a permutation s on the set f1; 2; . . . ;Mg the ordered
region Os consists of the following set of points

Os � fx A R2 : ws1
g�xÿ as1

�U � � �UwsM
g�xÿ asM

�g

Notice that these regions need not be convex sets, see Figure 3.
The importance of these regions is that in their intersection with any ele-

mentary convex set the problem 1=R2= � =gB=Sord behaves like a Weber prob-

Fig. 2. An example for a degenerated bisector

Fig. 3. Ordered regions
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lem, i.e. the objective function has a unique linear representation. The inter-
sections between ordered regions and e.c.s. are called, according to Puerto
and FernaÂndez [19], generalized elementary convex sets (g.e.c.s.). The ordered
regions play a very important role in the algorithmic approach developed for
solving the problem. In terms of bisectors, these regions are cells de®ned by at
most M ÿ 1 bisectors of the set A.

However, the main disadvantage of dealing with these regions is their
complexity. A naive analysis could lead to conclude that their number is M !
which would make the problem intractable. Fortunately, we can obtain a
polynomial bound which allows us to develop in the next section an e½cient
algorithm for solving Problem (1).

Theorem 2.1. An upper bound on the number of ordered regions is O�M 4G2�.

Proof: Given two bisectors with O�G� linear pieces, the maximum number of
intersections is O�G2�. The number of bisectors of M points is

ÿ
M
2

�
, so, the

maximum number of intersections between them is O G2
M
2� �
2

� �� �
. By

the Euler formula, the number of intersections has the same complexity as the
number of regions. Hence, an upper bound for the number of ordered regions
is O�M 4G2�. r

A detailed analysis of this theorem shows that this bound is not too bad.
Although, it is of order M 4G2, it should be noted that the number of bisectors

among the points in A is
ÿ

M
2

�
which is order M 2. Therefore, even in the

most favorable case of straight lines, the number of regions in worst case

analysis gives O
ÿ

M
2

�2
� �

which is, in fact O�M 4�. Since our bisectors are

polygonal with G pieces, this bound is rather tight.

Example 2.1. Figure 3 shows the ordered regions between the points a1 �
�0; 11�, a2 � �3; 0� and a3 � �16; 8� with the hexagonal norm whose set of
extreme points is Ext�B� � f�2; 0�; �1; 2�; �ÿ1; 2�; �ÿ2; 0�; �ÿ1;ÿ2�; �1;ÿ2�g.
For instance, the region O�3;1;2� is the set of points

fx A R2 : g�xÿ a3�U g�xÿ a1�U g�xÿ a2�g

Finally, we quote for the sake of completeness a result stated in [19] which
geometrically characterizes the solution set of the ordered Weber location
problem: ``The whole set of optimal solutions of Problem (1) always coincides
with some generalized elementary convex sets''. This is to say, the solution set
coincides with the intersection of ordered regions with elementary convex sets
[8].

3 Single facility model

Having introduced the main geometrical properties of this new model, we next
want to develop an algorithmic approach for solving the single facility ordered
Weber problem.
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It should be noted that for the Weber problem with polyhedral norms
several algorithms have been proposed, see e.g. [5, 20, 21].

We start with a well-known reformulation for F�x� the proof of which can
be found for example in Theorem 368 in [12].

Lemma 3.1. If the scalars in the set L satisfy l1 U � � �U lM then

F �x� �
XM
i�1

lig�xÿ A��i� � max
s AP�M�

XM
i�1

liwsi
g�xÿ asi

�

where P�M� stands for the set of permutations of f1; . . . ;Mg.

This formulation can be interpreted as a worst-case approach with respect
to all the possible weight arguments. First, we will consider the case where the
lambdas satisfy l1 U � � �U lM , since this makes the objective function much
easier to handle and still includes all classical cases (center, median, centdian).

Lemma 3.2. F is a convex function.

Proof: By the previous lemma, F�x� is the maximum of convex functions and
is therefore convex. r

Moreover, Puerto and FernaÂndez [19] proved that the set of optimal solu-
tions of Problem (1) always coincides with some generalized elementary con-
vex sets. However, the large number of generalized elementary convex sets
requires some kind of good enumeration scheme to derive an algorithm.

Since we restrict ourselves to polyhedral gauges a simple approach can be
given. Within an ordered region Os, consider the following linear program:

min
XM
i�1

lizsi

s:t: wihe0
g ; xÿ aiiU zi e0

g A ext�B0�; i � 1; 2; . . . ;M �Ps�

zsi
U zsi�1

i � 1; 2; . . . ;M ÿ 1:

Lemma 3.3. For any x A Os we have:

1. x � �x1; . . . ; xn� can be extended to a feasible solution �x1; . . . ; xn; z1; . . . ;
zM� of Ps.

2. The optimal objective value of Ps with x ®xed equals F�x�.

Proof: ad 1) Since g�xÿ ai� � maxe0
g A ext�B0�he0

g ; xÿ aii (see [21]), we can set

zi :� wig�xÿ ai� which satis®es the ®rst set of inequalities in Ps. From x A Os

we have wsi
g�xÿ asi

�Uwsi�1
g�xÿ asi�1

� for i � 1; . . . M. Therefore zsi
U zsi�1

and also the second set of inequalities of Ps is ful®lled.
ad 2) Since by the ®rst set of inequalities in Ps we always have zi Vwi

maxe0
g A ext�B0�he0

g ; xÿ aii. Therefore in an optimal solution �x; z�� of Ps for
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®xed x we get

z�i � wi max
e0

g A ext�B0�
he0

g ; xÿ aii � wig�xÿ ai�:

This means for the objective function value of Ps

XM
i�1

liz
�
si
�
XM
i�1

liwsi
g�xÿ asi

� � F �x�: r

Corollary 3.1. If for an optimal solution �x�; z�� of Ps we have x� A Os then x�
is also an optimal solution to the ordered Weber problem restricted to Os.

Lemma 3.4. If for an optimal solution �x�; z�� of Ps we have x� A Os 0 and
x� B Os with s0 s 0 then

min
x AOs 0

F�x� < min
x AOs

F�x�

Proof: Since s0 s 0 there exist at least two indices i and j such that for x A Os

we have wig�xÿ ai�Uwjg�xÿ aj� and for x A Os0 we have wig�xÿ ai� >
wjg�xÿ aj�. But �x�; z�� is feasible for Ps, which means z�i U z�j and

z�i Vwi max
e0

g A ext�B0�
he0

g ; x
� ÿ aii � wig�x� ÿ ai�;

z�j Vwi max
e0

g A ext�B0�
he0

g ; x
� ÿ aii � wig�x� ÿ ai�:

Together we get for x� A Os 0 and �x�; z�� being feasible for Ps that z�j >
wjg�x� ÿ aj� in Ps. This implies that the optimal objective value for Ps which

is
PM

i�1 liz
�
si
> F�x��. But from Lemma 3.3 we know that since x� A Os 0 the

optimal objective value of Ps 0 equals F �x��. r

Based on Lemma 3.4 and the fact that the objective function is globally
convex we develop a descent algorithm for this problem. For each ordered
region we solve the problem as a linear program which geometrically means
either ®nding the locally best solution in this ordered region or detecting that
this region does not contain the global optimum by Lemma 3.4. In the former
case two situations may occur. First, if the solution lies in the interior of the
considered region (in R2) then by convexity this is the global optimum and
secondly, if the solution is on the boundary we have to do a local search in the
neighborhood regions where this point belongs to. This is done in Step 7 of the
algorithm. It is worth noting that to accomplish this search a list L containing
the already visited neighborhood regions is used in the algorithm. Besides, it
is also important to realize that neither Step 2 nor Step 5 need to explicitly
construct the corresponding ordered region. It su½ces to evaluate and to sort
the distances to the demand points.
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ALGORITHM 3.1.

Solving 1=R2= � =gB=
P

ord

Step 1 Choose xo as an appropriate starting point. Initialize L :�q, y� � xo.
Step 2 Look for the ordered region, Os o which y� belong to, where so deter-

mines the order.
Step 3 Solve the linear program Ps0 . Let u0 � �x0

1 ; x
0
2 ; z

0
s� be an optimal solu-

tion. If x0 � �x0
1 ; x

0
2� B Oso then determine a new ordered region Os o ,

where x0 belongs to and go to Step 3.
Step 4 Let yo � �x0

1 ; x
0
2�.

Step 5 If yo belongs to the interior of Os o then set y� � y0 and go to Step 8.
Step 6 If F �yo�0F �y�� then L :� fs0g
Step 7 If there exist i and j verifying

g�yo ÿ as o
i
� � g�yo ÿ as o

j
� i < j such that

�so
1 ; . . . ; so

j ; . . . ; so
i ; . . . ; so

n � B L

then do
a) y� :� yo, so :� �so

1 ; s
o
2 ; . . . ; so

j ; . . . ; so
i ; . . . ; so

M�
b) L :�LW fsog
c) go to Step 3
else go to Step 8 (Optimum found)

Step 8 Output y�

The above algorithm is e½cient in the sense that it is polynomially
bounded. Once the dimension of the problem is ®xed, its complexity is domi-
nated by the complexity of solving a linear program for each ordered region.
Since the number of ordered regions is polynomially bounded and the interior
point method solves linear programs in polynomial time, Algorithm 3.1 is
polynomial in the number of cells.

Example 3.1. Consider the problem

min
x AR2

g�xÿ A��1� � 2g�xÿ A��2� � 3g�xÿ A��3�

where A � f�3; 0�; �0; 11�; �16; 8�g and gB is the hexagonal polyhedral norm
with Ext�B� � f�2; 0�; �1; 2�; �ÿ1; 2�; �ÿ2; 0�; �ÿ1;ÿ2�; �1;ÿ2�g.

We show in Figure 4 the generalized elementary convex sets for this
problem. Notice that the thick lines represent the bisectors for the points in
A, while the thin ones are the fundamental directions of the norm. We solve
the problem using Algorithm 3.1. Starting with xo � �0; 11� we get the opti-
mal solution in two iterations. In the ®rst one, we get the point x1 � �6:5; 8�
with objective value 26.25. In the second iteration, we obtain x2 � �7; 8� with
objective value 26. This point cannot be improved in its neighborhood,
therefore it is the optimal solution.

The iterations given by the algorithm for this example are depicted in
Figure 4.
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If we allow the lambdas to be non-monotone we loose the convexity of
F �x�. Therefore the linear programming approach in Algorithm 3.1 becomes
quite expensive, since we need to look at all possible ordered regions without
explicitly constructing them. This means to search through an exponential
number of regions. However, we can use the explicit construction of the
ordered regions developed in the previous section. Now there are two ways
to get an e½cient algorithm even in the non-convex case. First, we can con-
struct the ordered regions explicitly, solve the linear programs Ps for all the
O�M 4G4� ordered regions and determine the globally best solution. Secondly,
we can construct all intersection points of all fundamental directions together
with the all bisectors. This set constitutes a FDS (®nite dominating set) for any
ordered Weber problem in the plane, since the objective function behaves lin-
ear on the g.e.c.s and the described intersection points are just the extreme
points of the g.e.c.s.

Summing up, we developed an e½cient descent algorithm for the convex
case and also two possibilities for e½cient algorithms in the general case.

4 Extension to the multifacility case

A natural extension of the single facility model is to consider the location of N
new facilities rather than only one. In this formulation the new facilities are
chosen to provide service to all the existing facilities minimizing an ordered
objective function. These ordered problems are of course harder to handle
than the classical ones not considering ordered distances. Therefore, as no
detailed complexity results are known for the ordinary multifacility problem
nothing can be said about the complexity of the ordered Weber problem.
Needless to say that its resolution is even much more di½cult than for single
facility models.

Before formalizing the above problem, we will distinguish two di¨erent

Fig. 4. Optimal solution

A ¯exible approach to location problems 79



approaches that come from two di¨erent interpretations of the new facilities
to be located. The ®rst one assumes that the new facilities are not inter-
changeable, which means that they are of di¨erent importance for each one of
the existing facilities. The second one assigns the same importance to all new
facilities. Here, we are only interested in the size of the distances, which means
that we do not consider any order among the new facilities and look for equity
in the service, minimizing the largest distances.

4.1 The non-interchangeable multifacility model

Let us consider a set of demand points A � fa1; a2; . . . ; aMg. We want to
locate N new facilities X � fx1; x2; . . . ; xNg which minimize the following
expression:

FI �x1; x2; . . . ; xN� �
XN

i�1

XM
j�1

lijg�xi ÿ A�� j� �
XN

k�1

XN

l�1

mklg�xk ÿ xl� �3�

where

l11 U l12 U � � �U l1M

l21 U l22 U � � �U l2M

� � �

lN1 U lN2 U � � �U lNM ;

mkl V 0 for any k � 1; . . . ;N, l � 1; . . . ;N and g�xi ÿ A�� j� is the expression,
which appears at the j-th position in the ordered list

Mi � fwpg�xi ÿ ap�; p � 1; 2; . . . ;Mg for i � 1; 2; . . . ;N: �4�

Note that in this formulation we assign the lambda parameters with re-
spect to each new facility, i.e., xj is considered to be non-interchangeable
with xi whenever i 0 j. For this reason we say that this model has non-
interchangeable facilities. With the same classi®cation scheme [16] used for the
single facility model, we will refer to this problem as N=R2=lord=gB=Sord .

In order to illustrate this approach we show an example which will serve as
motivation for the following:

Consider a distribution company with a central department and di¨erent
divisions to distribute di¨erent commodities. A new set of ®nal retailers ap-
pears in a new area. Each division wants to locate a new distribution center to
supply the demand generated by these retailers with respect to its own strate-
gic objective. The overall operation cost is the sum of the operation cost of the
di¨erent divisions plus the administrative cost which only depends of the dis-
tances between the new distribution centers and which is supported by the
central department. It is evident that for each division the quality of its dis-
tribution center only depends on the orders of the distances to the retailers but
not on the name given to them, i.e. it depends on the ordered distances from
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each new facility to the retailers. Therefore, for this situation an ordered
multifacility non-interchangeable model with a new facility for each com-
modity (division) of the company should be used.

As in the single facility model we can prove that the objective function (3)
is convex, which eases the analysis of the problem and the development of an
e½cient algorithm.

Proposition 4.1. The objective function FI is convex.

Proof: We know that

XN

i�1

XM
j�1

lijg�xi ÿ A�� j� �
XN

i�1

max
s i

XN

j�1

lijws i
j
g�xi ÿ as i

j
�

where s i is a permutation of the set f1; 2; . . . ;Mg. Therefore, the ®rst part of
the objective function is a sum of maxima of convex functions analogous to
Lemma 3.1. Hence, it is a convex function. On the other hand, the second
term of the objective function FI is convex. Thus, FI is a convex function as a
sum of convex functions. r

The problem N=R2=lord=gB=
P

ord can be transformed within the new
ordered regions in the same way that we did for 1=R2=lord=gB=

P
ord . It

should be noted that in R2 the subdivisions induced by the ordered regions
of this problem are given as intersection of N subdivisions. Each one of
these N subdivisions determines the ordered regions of each new facility.

Let sk � �sk
1 ; . . . ; sk

M� k � 1; . . . ;N be the permutations which give the
order of the lists Mk introduced in (4). Consider the following linear program
�PI

s�:

min
XN

k�1

XM
l�1

lklzks k
l
�
XN

i�1

XN

j�1

mij yij

s.t.

wlheo
g ; xk ÿ aliU zkl eo

g A Bo; k � 1; 2; . . . ;N; l � 1; 2; . . . ;M

heo
g ; xi ÿ xjiU yij i � 1; 2; . . . ;N; j � i � 1; . . . ;M

zksk
l
U zks k

l�1
k � 1; 2; . . . ;N; l � 1; 2; . . . ;M ÿ 1

Then, Algorithm 3.1 can easily be adapted to accommodate the multifacility
case. Note than in contrary to that algorithm where we look for one point in
R2 we now look for N points in R2 or equivalently for one point in R2N . To
do that, we only have to modify Step 1 by choosing N starting points instead
of one. In addition, we also have to consider that now the ordered regions
are de®ned by di¨erent permutations, one from each list Mi. Therefore, we
have to replace the linear program Ps by PI

s and to adapt its set of optimal
solutions.

A ¯exible approach to location problems 81



Since this algorithm is essentially the same that the one proposed for the
single facility model, we can conclude that it is also polynomial bounded,
hence applicable.

Example 4.1. Consider the two-facility problem.

min
x1;x2 AR2

2:5gB�x1 ÿ A��4� � 2gB�x1 ÿ A��3� � 1:5gB�x1 ÿ A��2�

� gB�x1 ÿ A��1� � 0:75gB�x2 ÿ A��4� � 0:1gB�x2 ÿ A��3�
� 0:1gB�x2 ÿ A��2� � 0:1gB�x2 ÿ A��1� � 0:5gB�x1 ÿ x2�

where A � f�3; 0�; �0; 11�; �16; 8�; �ÿ4;ÿ7�g, and gB is the hexagonal poly-
hedral norm, which we used in Example 3.1.

We obtain in the second iteration the optimal solution, with starting
points xo

1 � �0; 11� and xo
2 � �16; 8�. The optimal solution is �2:75; 5:5� and

�3:125; 5:875�. The elementary convex sets and the optimal solution can be
seen in Figure 5.

4.2 The indistinguishable multifacility model

The multifacility model that we are considering now di¨ers from the previous
one in the sense that the new facilities are similar from the users point of view.
Therefore, the new facilities have no di¨erent importance with respect to the
existing ones. On the contrary, the weight given to each one of these new
facilities depends only on the size of the distances.

Fig. 5. Illustration for Example 4.1
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Using the same notation as in Section 4.1, the objective function of this
model is:

FII �x1; x2; . . . ; xN� �
XNM

j�1

ljg�xÿ A�� j� �
XN

i�1

XN

j�1

mijg�xi ÿ xj�

where

l1 U l2 U � � �U lNM

and g�xÿ A�� j� is the expression which appears at the j-th position in the
following ordered list

MII � fwpg�xk ÿ ap�; k � 1; 2; . . . ;N; p � 1; 2; . . . ;Mg:
According to the classi®cation scheme this problem is written as

N=R2= � =gB=
P

ord . Also this model is motivated by a hypothetical real
situation:

Consider the same multi-commodity distribution company as in the last
subsection. However, assume now that in this case the strategic objective is
not ®xed by each division but it is ®xed by the central department. Therefore,
the objective is still to locate a distribution center for each commodity but the
total cost of the distribution is supported by the central department. Thus, the
complete order of the distances to the retailers from the distribution centers
is important rather than the distances with respect to each one of the centers
for the di¨erent commodities. With these hypotheses this situation can be
formulated as a multifacility indistinguishable model where we want to locate
as many facilities as di¨erent commodities in the company depending on
complete the size of the distances.

Proposition 4.2. The objective function FII is convex.

The proof is analogous to the one given for Proposition 4.1. r

Using again the same strategy that we have already used for the non-
interchangeable multifacility model, the problem N=R2= � =gB=

P
ord can be

solved using an adaptation of Algorithm 3.1.
Let s be a permutation of f1; . . . ;MNg where s�kÿ1�M�j gives the position

of wjg�xk ÿ aj� in MII .
Consider the following linear programming problem �PII

s �:

min
XN

k�1

XM
l�1

lskl
zs�kÿ1�M�l

�
XN

p�1

XN

q�1

mpq ypq

s.t.

wlheo
g ; xk ÿ aliU z�kÿ1�M�l eo

g A Bo k � 1; 2; . . . ;N l � 1; 2; . . . ;M

heo
g ; xp ÿ xqiU ypq p � 1; 2; . . . ;N q � 1; . . . ;N

zs�kÿ1�M�l
U zs�kÿ1��l�1

k � 1; 2; . . . ;N l � 1; 2; . . . ;M ÿ 1
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Once we replace PI
s by PII

s we can easily adapt the algorithmic approach
showed for the previous model in Section 4.1. Hence, the same conclusions
thatwe obtained for N=R2=lord=gB=

P
ord are applicable to N=R2= � =gB=

P
ord .

5 Extensions

5.1 Restricted case

In the last years an extension to classical location models which has
attained considerable attention are the restricted facility location problems.
When solving restricted location problems a forbidden region, where it is not
allowed to place a new facility has to be respected (see for instance, Brady and
Rosenthal [3], Drezner [7], Karkazis [14], Aneja and Palar [1]). Also the work
of Francis et al. [9] in which a contour line approach is given is related to this
topic and Hamacher and Nickel [10] and Nickel [16], describe a general dis-
cretization concept for solving restricted location problems.

In this section we will study the ordered Weber problems with forbidden
regions.

We will assume that there is a forbidden region R containing all the
optimal solutions of the unrestricted problem. This hypothesis is necessary
because otherwise we can get the optimal solution by solving the unrestricted
problem. Moreover, if the number of forbidden regions is greater than one, to
obtain the optimal solution of the restricted problem, we only have to consider
the forbidden region which contains the optimal solution of the unrestricted
problem.

As basis of the solution procedure we need the following result.

Theorem 5.1. For 1=R2=R=gB=
P

ord with polyhedral gauges there is always an
optimal solution on the 0-dimensional intersections between the boundary of R,
the fundamental directions and the bisector lines.

Proof: Using the same arguments as in Theorem 2.4.5 in [16], it follows that
the optimal solutions of the restricted ordered facility location problem is on
the boundary of the forbidden region. Moreover, the objective function is
linear in each generalized elementary convex set, see Lemma 3.4, and the
proof follows analogous to [16]. r

As an immediate consequence of the Theorem 5.1 we state the following
algorithm for solving the single facility problems with a forbidden region, R.

ALGORITHM 5.1.

Solving 1=R2=R=gB=
P

ord

Step 1 Compute the fundamental directions and bisector lines for all existing
facilities.

Step 2 Determine fy1; y2; . . . ; ykg the intersection points of fundamental di-
rections or bisector lines and the boundary of the forbidden region, R.

Step 3 Compute x�R A arg minf f �y1�; f �y2�; . . . ; f �yk�g (x�R is an optimal so-
lution to the restricted location problem).
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Step 4 The set of optimal solutions is fx : f �x� � f �x�R�g intersected with the
boundary of R.

For the particular case of polyhedral forbidden regions we can get better
results. Let R be a polyhedral forbidden region, fs1; s2; . . . ; skg the set of
facets of R and A � fa1; . . . ; aMg the set of existing facilities.

ALGORITHM 5.2.

Solving 1=R2=R � convex polyhedron=gB=
P

ord

Step 1 Let p :� 1, L :�q and let y� be an arbitrary feasible solution.
Step 2 Consider the hyperplane Tp de®ned by the facet sp of R and choose xo

belonging to the relative interior of sp. Let TU
p be the halfplane which

does not contain R and let x� � xo.
Step 3 Determine the ordered region Os o where xo belongs to, and the permu-

tation so which determines this region.
Step 4 Solve the following linear program

min
XM
i�1

lizs o
i

s:t: wihbg; xÿ aiiU zi eg A Bo; i � 1; 2; . . . ;M;

zs o
i
U zs o

i�1
i � 1; 2; . . . ;M ÿ 1;

x A TU
p :

�PTU�

Step 5 Let uo � �xo; zo
s� be an optimal solution of PTU

p
. If xo B Os o then go to

Step 3.
Step 6 If x0 belongs to the interior of Os o then let x� � xo and go to Step 9
Step 7 If F �xo�0F�x�� then L :�q
Step 8 If there exist i and j verifying

g�xo ÿ aso
j
� � g�xo ÿ as o

i
� i < j such that

�so
1 ; . . . ; so

j ; . . . ; so
i ; . . . ; so

M� B L

Then do

a) x� :� xo, so :� �so
1 ; s

o
2 ; . . . ; so

j ; . . . ; so
i ; . . . ; so

M�
b) L :�LW fsog
c) GO TO Step 4.

Step 9 Do
a) If F �x�� < F�y�� then y� :� x�
b) p :� p� 1.
d) If p < k GO TO Step 2, otherwise the optimal solution is y�.

Notice that this algorithm can be used to solve problems with convex forbid-
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den regions not necessarily polyhedral. In order to do so we only have to ap-
proximate these regions by polyhedral ones. Since this approximation can be
done with arbitrary precision using for instance the sandwich approximation
in [4] and [13], we can get good approximations to the optimal solutions of the
original problems.

5.2 Non polyhedral case

In the previous sections we considered polyhedral gauges. For some special
cases the results presented so far can be adapted also to non polyhedral
gauges. In the case of the Euclidean norm, for example, numerous algorithms
exist to determine the bisectors needed for constructing the ordered regions
(see [17]). Then, instead of linear programs, convex programs have to be
solved in these ordered regions. However, this is not possible for general
gauges and therefore will use the results of the polyhedral case to develop a
general scheme for solving the considered problems under general gauges (non
necessarily polyhedral).

We show that the optimal solutions of these problems can be arbitrarily
approximated by sequence of optimal solutions of problems with polyhedral
gauges converging under the Hausdor¨ metric to the considered non-
polyhedral one.

Although in this section, we only consider the objective function of the
single facility case, F �x�, all the results can be extended in an easy way to the
multifacility cases.

Let B be a unit ball of the gauge gB���, fBngn AN an increasing sequence
of polyhedra included in B and fBngn AN a decreasing sequence of polyhedra
including B, that is,

Bn HBn�1 HBHBn�1 HBn for all n � 1; 2; . . .

Let gBn
��� and gB n��� be the gauges whose unit balls are Bn and Bn respectively.

Proposition 5.1. If Bn HBHBn we have that

gBn
�x�V gB�x�V gBn�x� Ex A R2

The proof follows directly from the de®nition of gauges.
Recall that given two compact sets A;B the Hausdor¨ distance between A

and B is

dH�A;B� � max max
x AA

d2�x;B�;max
y AB

d2�A; y�
� �

where d2�x;B� � miny AB d2�x; y� being d2 the Euclidean distance.

Proposition 5.2. Let K be a compact set. If Bn converges to B and Bn converges
to B under the Hausdor¨ metric then for all e > 0 there exists n0 such that for
all nV n0
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max
x AK
jFn�x� ÿ F�x�j < e

max
x AK
jF n�x� ÿ F�x�j < e

being Fn�x� :�PM
i�1 ligBn

�xÿ A��i� and F n�x� :�PM
i�1 ligBn�xÿ A��i�.

Proof: We only prove the ®rst inequality. The second one follows analogously.
Since Bn converges to B under the Hausdor¨ metric verifying Bn H

Bn�1 for all n, and K is a compact set then given e > 0 there exists na for
all a A A such that if n > nA :� maxa AA na then jgB�xÿ a� ÿ gBn

�xÿ a�j <
ePM

i�1 wi

PM
i�1 li

Ex A K .

By continuity we have that for any i; j and any x A K verifying that
wigB�xÿ ai� < wjgB�xÿ aj� there exists n0 such that for all n > n0

wigBn
�xÿ ai� < wjgBn

�xÿ aj�
On the other hand, if there exists k; l and x A K such that wkgB�xÿ ak� �

wlgB�xÿ al� then there also exists n0 and a permutation sn0 such that for all
n > n0 it holds: 1) ws

n0
k

gBn
�xÿ as

n0
k
� � gBn

�xÿ A��k�, and 2) ws
n0
k

gB�xÿ as
n0
k
�

� gB�xÿ A��k�. Hence, we have for any x A K and n > maxfnA; n0g that

gB�xÿ A��k� � ws
n0
k

gB�xÿ as
n0
k
�

gBn
�xÿ A��k� � ws

n0
k

gBn
�xÿ as

n0
k
�:

Therefore for any x A K and n > maxfnA; n0g we obtain that

jFn�x� ÿ F�x�j �
XM
i�1

lijgB�xÿ A��i� ÿ gBn
�xÿ A��i�j

�
XM
i�1

liws
n0
i
jgB�xÿ as

n0
i
� ÿ gBn

�xÿ as
n0
i
�j < e: r

Corollary 5.1. i) If Bn converges to B under the Hausdor¨ metric, then Fn�x�
converges to F�x�, and the sequence fFn�x�gn AN is decreasing.
ii) If Bn converges to B under the Hausdor¨ metric, then F n�x� converges to

F�x�, and the sequence fF n�x�gn AN is increasing.

In the following, we use another kind of convergence, called epi-
convergence see De®nition 1.9 in the book of Attouch [2]. Let fg; gn;
n � 1; 2; . . .g be a collection of extended-values functions. We say that gn epi-
converges to g if for all x,

inf
x n!x

lim inf
n!y

gn�xn�V g�x�

inf
x n!x

lim sup
n!y

gn�xn�U g�x�
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where the in®ma are with respect to all subsequences converging to x. The epi-
convergence is very important because it establishes a relationship between the
convergence of functionals and the convergence of the sequence of their min-
ima. Further details can be found in the book of Attouch [2].

Our next result states the theoretical convergence of the proposed
scheme.

Theorem 5.2. i) Let fxngn AN be a sequence such that xn A arg min Fn�x� then
any accumulation point of fxngn AN belongs to arg min F .

ii) Let fxngn AN be a sequence such that xn A arg min F n�x� then any accu-
mulation point of fxngn AN belongs to arg min F .

Proof: We only prove the ®rst part, because the proof of the second one is
built on the same pattern using Proposition 2.41. in [2] instead of Proposition
2.48.

First of all, since the sequence fFngn AN is a decreasing sequence applying
Theorem 2.46 in [2] we obtain that the sequence fFn�x�gn AN is epi-convergent.

In addition, we get from Proposition 2.48 in [2] that

lim
n!y

inf
x AR2

Fn�x� � inf
x AR2

lim
n!y

Fn�x� � inf
x AR2

F�x� �5�

Since R2 is a ®rst countable space and fFngn AN is epi-convergent,we get from
Theorem 2.12 in [2] that any accumulation point of the sequence fxngn AN is
an optimal solution of the problem with objective function F. r

5.3 Conclusions

In this paper we have presented e½cient algorithms for the ordered Weber
problem introduced by [19] for the case of polyhedral gauges. Even for the
case of a non-convex objective function a polynomial global optimization
algorithm could be derived by using geometric properties of the problem. Also
extensions to the multifacility case have been developed. In addition a dis-
cussion of the non polyhedral case and the case with forbidden regions has
been presented. Therefore, we have provided a new ¯exible tool for modeling
and solving a broad range of location problems.

As already mentioned in the introduction most of the results can easily be
extended to Rn.

Further research includes the analysis of a multi-criteria formulation of
these problems as well as a detailed study about ordered Weber problems with
some negative weights. Also an analogous model for network location prob-
lems is under research.
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